Towards the Industrial Scale Development of
Custom Static Analyzers

John Anton, Eric Bush, Allen Goldberg, Klaus Havelund, D&gith, Arnaud Venet
Kestrel Technology LLC
4984 E| Camino Real #230
Los Altos, CA 94022
{ant on, eri cbush, gol dber g, havel und, sni t h, ar naud}@xestrel t echnol ogy. com
http://ww. kestrel technol ogy. com

Abstract— This paper presents a high level overview of a tech- may be optimized by static analysis. Within our framework
nology called CodeHawk whose purpose is to support verifi- dynamic properties are complex temporal properties expres
cation of software properties. Today's commercially ava@ble i, 5 rich specification notation and the validity of such a

static analysis tools identify potential runtime and vulneability - .
problems based on properties described in the semantics of property may depend on establishing relag-properties

the programming language. While CodeHawk will detect those at many different program points. Static analysis may yerif
classes of problems, it is distinguished by the user’s abiji to these sub-properties.

generate high performance static analyzers for the verificon Th ind £ thi . ized foll Th
of application-specific properties. Today’s static analyers may e remainder of this paper Is organized as follows. e

also trade off assurance and flexibility for speed in handlig NeXxt section overviews abstract interpretation, the thewor
very large code sets. Our goal with CodeHawk is to handle which CodeHawk is based. This is followed by an overview
industrial sized code sets with the highest speed in the indtry of CodeHawk. The next section describes how domain-specific
among those offering 100% verification assurance. CodeHavi& ., ies are incorporated into CodeHawk through matigat
customizability opens up additional uses of the core techhagy . . . L
beyond detecting runtime or vulnerability exposures. In ths ?Xaml?'es- Then we d.ISCUSS dynamlc gnaly3|s and its |nFegra—
paper we describe one such use, namely static analysis in gt tion with static analyS|S. The final section states conolusi

of optimized dynamic analysis.

Il. ABSTRACTINTERPRETATION
. INTRODUCTION

Static analysis is a generic term encompassing a variety
In this paper we present our approach to static analysis@é laof techniques that vary greatly in scope and nature (type
software systems using a platform enabling the rapid devehecking, coding style analysis, model checking, dataflow
opment of custom static analyzers: CodeHawk. Unlike sora@alysis, statistical pattern inference, pointer analysic.).
static analysis approaches that are optimized to identifgsb Abstract Interpretation [5], [6] is a theoretical framekor
but not prove the absence of bugs, our objective is to achiemeabling the systematic constructionsofundstatic analyzers.
full code coverage so that there are no false negatives wily soundness, we mean thalt possible execution paths are
respect to a set of well-defined properties. This is appab@ri taken into account in the analysis. Hence, the properties of
for high assurance systems, particularly those that must pthe program discovered by such an analyzer are guaranteed to
a rigorous certification process. In particular CodeHawk cdnold in any configuration of the program. Formal verification
prove properties of a C program’s memory accesses that afeprogram properties can thus be achieved by Abstract
sufficient for 100% assurance of the absence of buffer owerflénterpretation. A precise description of Abstract Intetation
errors. Insuring there are no false negatives together anth is beyond the scope of this paper. We rather give the main
acceptably low rate of false positives raises a challengiimguitions underpinning the theory.
scaling problem. Our approach to achieving scalabilityos trye pehavior of a program is described by the set of its
customize the analysis to the application domain, and 0 Usgc\tion traces under all possible inputs. Executionesac
algorithms engineered for high performance. can be formally described using a mathematical modeling
CodeHawk is a component of a larger system that combineghnique calledperational semanticE3]. Abstract Interpre-
static analysis with dynamic analysis. Dynamic analydisree tation allows us to build a finite machine-computable model
to monitoring the execution of a program for conformancef the operational semantics of a program using two tools:
with a set of properties. Static and dynamic analysis imtergartitioning andabstraction Partitioning consists of grouping
in two ways. First, static analysis can either establish &ha program configurations into a finite number of disjoint sets a
property holds, establish that it does not, or fail to come iiustrated in Fig. 1. For example, we can partition program
any conclusion. Dynamic checks may be inserted in the codenfigurations with respect to program control points, two
to assist this process. Second, checking of dynamic prieperconfigurations are in the same patrtition iff they reach theesa

Execution Traces Abstract Interpretation

»O—0O

»
L

Fig. 1. Partitioning of program configurations

statement in the program. Abstraction consists of definingda for(i = 0; i
single finite representation of all configurations in a piani. 5: a[i] = 1.0;
For example, if all the program variables are integer-véjee 6: }

possible abstraction consists of assigning an intervalatthe 7: a[i] = 3.0;
variable that contains all possible values of the variablariy

configuration of the partition [4]. Now, assume that we are interested in assessing the cassctn

The abstraction process may cause the representation Ieﬁf all array accesses. In the example, this translates into

program configurations that never occur in real executibos. verifying the property) < i < 10 at lines5 and7. The ab

. . . . o stract semantic model defines the level of abstraction athwhi
example, if we have two configurations in a partition wher

o o . L : t%e analysis algorithms will operate. For example, one can
i = 2andi = 4, variablei is represented by the interval ;

. : . ; .- choose to ignore all information stored in data structuféss
[2, 4], denoting the spurious configuration where= 3.

. . . oo . makes sense for applications like embedded systems where
This explains the existence &dlse positivesn program veri- . : . .
L ; the control structure is essentially driven by local vaesb
fication by Abstract Interpretation. A property may very el : . !) : .
) . as described in [10]. This abstraction may be inappropriate

hold for all program executions, however the static analyz i .

. . L ”~tor other families of programs. Once the abstract semantic
cannot verify this is true, because it is violated for spusio model has been determined. abstract interpretation #iaosi
configurations resulting from the abstraction employedteNo ' P

that we cannot havéalse negativesi.e., a property canno compute an envelope of all possible values for the program

deemed true by the analyzer, even though it is violated \I/r?rlables. If we choose an abstraction of numerical vaesbl

. L . . based on intervals, the analysis will automatically infeattthe
some executions. This is becausle program configurations PR .
. range of variable is [0,9] at program poin5, and[10, 10]
are covered by the abstraction.

at program point7. Then, the computed ranges are used to
Without entering in too much detail, we will just say that Abcheck the safety properties for array access.

stract Interpretation provides a methodology and a cafiact

of techniques that allow us to construct abstract semantic

model M of the program, that is a machine-representable I1l. CODEHAWK TECHNOLOGY

structure representing the program dynamics on the abstrac . .]
partitioning of configurations. The abstract semantic migle 1he Abstract Interpretation approach to static analysi&so
usually defined by induction on the syntax of the progra@ftractive, but it presents major hurdlgs. Bu"dmg a stati
and can be automatically generated by a proper translater. Bnalyzer based on Abstract Interpretation is a complex en-
envelope ofM, denoting the set of all possible configurationgineering task that can require substantial domain exygerti
of the program, can be computed iteratively using welP€signing the abstract semantic model and writing the
studied fixpoint algorithms [2]. This structure can then bianslator that takes the program text and produsésis

used to conduct automatic verification of the desired progrdh® most time-consuming part of the process. Moreover, the
properties. abstract semantic model is specially designed to suppert th

))) verification of a small number of program properties (usuall
We illustrate the abstract interpretation process on al®Ral ,,q) Scaling to large code-bases has been proven possible
ample. Consider the following piece of C code that initieiz 1y, ajioring the abstract semantic model toward the paettcu
an array of double-precision floating point numbers: structure of the software analyzed [10], [7]. All these fast

)] lead to large, complex, monolithic static analyzers tha ar
;j :jﬁt'b: ? a[10]; able to deal only with a handful of program properties. This
3j ' approach is impractical for all but a few critical applicats,

' and then only those blessed with a large V&V budget.

< 10; i++4) {

The purpose of the CodeHawk technology precisely con- nenccpy(buf, str, 0, 10);

sists of bringing the Abstract Interpretation approach to a printf("results: %\n", buf);

practical production level. CodeHawk is built on top of the }

Specware [8] formal specification environment developed by

Kestrel Institute. The main capability offered by CodeHawsk Which is an extract of example 000-001-314 in [9]. The
that of building a fully functional and efficient static apaér function takes as argument a string and prints it out, afghou
by assembling components drawn from a library of pred# an unnecessarily complicated, and subsequently unsafe,
fined abstractions. The Specware environment is partigulamanner, that embodies a potential for a buffer overflow. The
supportive of that activity. In particular, the code of théunction declares an arrayuf of size10. This array is then
whole analysis engine can be automatically generated frétted up with the text string. This is done by a call of the
the specification of the analyzer. A static analyzer chegkifunction:

for a certain class of properties and tailored for a specific) .

class of software can be rapidly specified and generated us#fi d *menccpy(void *s1, const void *s2,
CodeHawk. int ¢, size_t n);

CodeHawk’s precursor, CGS [10] is a static array-bounfe gescription of which is:

checker tailored for NASAs flight mission software. It can

scale up to half a million lines of C code, with a false = MenNTcpy copies bytes from memory area s2 into
positive rate< 20%. CGS is written in C and has a mono- S1, stopping after the first occurrence of ¢ has been
lithic architecture. Modifying the tool in order to have it ~ copied, or after n bytes have been copied, whichever
analyze specific constructs of flight software more pregisel ~ comes first.

is a complex and time consuming task. We found that tlﬁq]e problem occurs whestt r | en(str) (the length of the

remaining20% _false positives were essentially due to a”agtring) is bigger than or equal to the size of the array it is
bounds transmitted between threads through message queé@aed to (herel0), since in this case a final ‘0’ is not copied

Modifying the abstract semantic model in order to track thiiﬁto buf , and hence ibuf is now used as a string the end
information precisely was not difficult in theory, but thepat ¢ s sring will not be clearly marked. We want to enforce
on the implementation was enormous. This basically Stoppgfl, sjicy that the length of the copied string is strictigde
us from further specializing the analyzer. CodeHawk aims flan the size of the array. Then are we sure that a final ‘0’ is
simplifying this specialization process by generatinglyarers copied in

that have a flexible and tunable architecture. '

idi . it his fat In order to detect such an error statically, a specialized
Building an abstract semantic model from scratch is faxt algorithm can be programmed that performs a numerical

by CodeHawk, bl_Jt still remains th? jo_b of an expert. Webstraction of the program and analyzes this abstractitim wi
are currently working toward a specification .e_nwronmenlltb.u respect to a desired property. In this specific case the ab-
on top of CodeHawk that offers the capability of specifying ;o keeps track of sizes of arrays and sizes of sirings

custom program properties to verify and generate the Cortgyy yhe specification states that any calhefrccpy should
sponding analyzer. This specification environment willide copy a string with a smaller size than the size of the target

a high—le_/el_ interface to CodeHawk tha_t is acces_sible to t%?ray. The alternative to hard coding a static analyzer for
non-specialist and enable the construction of static aeady .o specific problem is to apply our generic approach and
for a broad spectrum of properties. The SAMATE database [ggfnthesize a static analyzer from an abstraction speddicat

will provide the basis for studying the specification langeia and a property specification stating a property to be checked

over the abstraction.
IV. STATIC ANALYSIS FROM NUMERICAL SPECIFICATIONS

Theproperty specificatiomow states the desired property, i.e.,
In this section we illustrate the concept of a specificatiothat calls ofmenccpy copy fitting strings:
environment men- tioned above on two examples: a string copy
function and a communication application using "nonces”. check NoBufferOverflow =
These examples rely on the core capability currently imple- al ways(nenccpy(arr, str, 0, N)

mented in CodeHawk: the analysis of numerical computations -> size(str) < size(arr))
They show analyzers for vulnerable use of the programmming _ _
language itself, resp. an application-specific property. Of course this property can also be checked dynamically
during program execution, and this might be a solution in
A. Buffer Overflow Violations case the property cannot be checked statically.
Consider the function est defined below: B. Nonce Repetition Violations
void test(char =*str){ The above example illustrated the detection of runtimererro

char buf[10]; in the form of buffer overflows. The following example

illustrates a security problem concerned with uniquendss miece of code is encountereekecute this other piece of code”.
authentification keys calledonces Nonces are used for ex-With tracecutsit is possible to state properties even more
ample in authentication protocols as a means of preventiggccinctly: “when thistemporal property is true about the
replay attacks. A nonce is a “number used once”. That is, tegecution trace execute this other piece of code”. Such a
creator of the nonce should insure that it has not been usedramework can furthermore be supported by static analysis i
previous runs of the protocol and that it is not guessable bye sense that static analysis statically attempts to miéter

an attacker. when the tracecuts are true in the program and hence the new

Typically, randomly generated numbers are used as nonc%%de can be inserted. In case it cannot be determined, m®enito

The SAMATE database [9] includes test cases (for exam;me“St be inserted in the code, which trigger the new code when

example test case 000-000-054) asserting that noncesdshéﬁf“cmng specific states.

be used for the present occasion and only once. Here Wee MODE system currently under development at Kestrel
consider how static and dynamic analysis can be used toeasstechnology combines static and dynamic analysis in such
correct uses on nonces. We assume a protocol is implemerdaadAOP framework with tracecuts, in &E called policies.

by a collection of procedure calls, and that if a step in thdoDE focuses on (1) a policy language based on state ma-
protocol requires a nonce it is a parameter to a specifibines for expressing system safety and information assara
proceduresendNonce. constraints, (2) static analysis mechanisms for deteqiligy

The abstraction specification would in this case define &kPlicability in a program, and (3) enforcement mechanisms
abstract state that maps each nonce to an integer indica associated assurance arguments and evidence. An over-

how many times it has been used. It will also state how thi¥ hing objective is to lower the cost of producing certified

abstract state is updated as a result of execution of prograffitware.

statements. The property specification will state thatritegier MODE uses fast static analysis algorithms provided by Code-
associated to a nonce should never go beyond 1. Static &nalifawk to match each policy against the program. The engineer
can also be used to check that the source of the value of tan specify whether to check a policy or enforce a policy. For
nonce parameter is a random variable library function. each location in the program where static analysis detersin
that a policy applies, MDE either checks that it holds
égﬁnerating a diagnostic message when it fails to hold) or
automatically generates enforcement code for insertidhait
location. MODE outputs a program that is consistent with the
original program and that is guaranteed to satisfy the eefbr

nmoni t or NonceOnl yOnce = policy.
al ways(sendNonce(x) -> NonceNot Seen(x))

However, if that cannot be statically validated, dynamialgn
sis can check that the nonce parameter is distinct at e
invocation. This property can be expressed in oWGEE
monitoring language [1] as:

] VI. CONCLUSION
rul e NonceNot Seen(int x) =

previously(sendNonce(y) -> x !=y) Static analysis for 100% verification of runtime, safety and

security properties, is important. But to be practical, itgn
satisfy two requirements. First, it must scale to applarati

Above it was mentioned that properties can be specified §/9€ Sizes used in industry. Second, it must support verifica
a formal specification language and then checked staticaffPn ©f properties that include those better defined in terms
In case the static analysis cannot demonstrate the prope?hyin€ application’s objectives, in addition to today’s soon
the whole property, or the part of the property that cannifloSe defined in terms of a programming language's usage.
be checked statically, can be checked dynamically durifye Nave introduced a technology platform called CodeHawk
program execution using runtime monitoring techniques. Wat can meet those requirements.
different way of thinking about this is to regard static anal
sis as a technique to optimize runtime monitoring: given REEERENCES
a property to be monitored during execution, optimize the
monitoring as much as possible in order to minimize thg1l] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. RBlased
impact on execution time and memory consumption. In reality Runtime Verificatior’m InProceedings of Fifth I_nternational VMCAI

. . conference (VMCAI'04)volume 2937 oL NCS Springer, January 2004.
these ar? two views of the same prObIem’ but from dlffererﬁ] F. Bourdoncle. Efficient chaotic iteration strategiegthwwidenings.
perspectives. Lecture Notes in Computer Scien&35, 1993.

. . [3] P. Cousot. Semantic foundations of program analysisS.B Muchnick
These ideas can be brought even further by observing 4 and N.D. Jones, editor®rogram Flow Analysis: Theory and Applica-

current trend within Aspect Oriented Programming (AOP): tions chapter 10, pages 303-342. Prentice-Hall, Inc., Englew@idfs,
the extension of pointcut languages with tracecuts (peteic bt _ o o

. | traditional AOP language such 6@ P. Cousot and R. Cousot. Static determination of dynapn@perties
on execution traces). n a ra ; guag > of programs. InProceedings of the Second International Symposium on
AspectJ an aspect contains advices of the form: “when this Programming pages 106-130. Dunod, Paris, France, 1976.

V. COMBINING STATIC AND DYNAMIC ANALYSIS

(5]

(6]

(7]

P. Cousot and R. Cousot. Abstract interpretation: a edifiattice
model for static analysis of programs by construction omrayximation
of fixpoints.
Programming Languagepages 238-353, 1977.

P. Cousot and R. Cousot. Systematic design of prograntysiaa

frameworks. InConference Record of the Sixth Annual ACM SIGPLANA0]

SIGACT Symposium on Principles of Programming Languageges
269-282. ACM Press, New York, NY, 1979.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. MinéManniaux,
and X. Rival. The ASTIRE Analyser. InProceedings of the European
Symposium on Programming (ESOP’08)lume 3444 olLecture Notes
in Computer Sciencepages 21-30, 2005.

In Proceedings of the 4th Symposium on Principles of[9]

[8] Kestrel. Specware System and documentatior2003.
http://www.specware.org/.
NIST SAMATE Reference Dataset Project. Soft-
ware Assurance Metrics and Tool Evaluation, NIST.

http://samate. ni st.gov/ SRD srdFi |l es/i ndex. php.

A. Venet and G. Brat. Precise and efficient static arrayrigl checking
for large embedded C programs. Rroceedings of the International
Conference on Programming Language Design and Implenientat
pages 231-242, 2004.

